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Motions of nonhomogeneous media which are close to characteristic (to 
Riemann Waves) have been studied in detail in the literature on the 
Propagation of waves with small wave length, i.e. in the approximation 
of geometric acoustics. These studies have included both the linear 
case cl-31 and consideration of nonlinear effects 14-71. The results 
which have been obtained refer to media with properties which do not 
vary with time. Naturally, any variation of the parameters of the medium 
with time introduces a number of peculiarities into the process of Pro- 
pagation. In partieular the duration (period) and the energy of a wave 
will vary even in the absence of any dissipative effects. 

In this paper waves will be considered in media, the parameters of 
which depend on the coordinate x and the time t; i.e. the medium moves 
in any specified manner in the direction of the x-axis. The method used 
below is somewhat different from the usual methods of characteristics. 
In certain cases it permits reduction of the problem to successive inte- 
gration of first-order partial differential equations. 

The method is first applied to the problem in which the undisturbed 
motion (undisturbed by the wave under consideration) is a simple 
(Riemann) wave. Here it is possible to obtain the general solution de- 
scribing acoustic disturbances of arbitrary shape. However. for arbi- 
trary initial motion of the medium the solutions which are found and 
investigated generalize the approximation of geometric acoustics to the 
case of waves in nonstationary media, including waves of finite ampli- 
tude. 

1. Xnteractkm of ncoastic and Meman waves. In the absence of 
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dissipative effects, the basic equations of gas dynamics have the form 

%+A$+$%&* $!z+$L=o 

St .$=o, p=p(p,S), es=, & 
( 1 

(14 

Here u is the velocity, p the density, p the pressure, c the speed 
of sound and s the entropy. 
sidered to be absent. 

Keeping in mind that the 
wave, we shall look for the 
example u) and the relation 
characteristic. Considering 
obtain 

For the present, external forces are con- 

motion differs only slightly from a Riemann 
derivative of one of the quantities (for 
between the remaining quantities and u on a 
for definiteness a c+-characteristic, we 

where 9 and y are unknown functions. The substitution of (1.2) into 
(1.1) results in equations which are linear in cp and y for isentropic 
mot ion 

3 + (u - c) !g = 0, cp=c ?I?_ 
C3X 

(1.3) 

Therefore, y is propagated along a c_-characteristic, 

In accordance with what has been stated above, let us set u = 

a*(@ + a’, p = p*(c) t p*, etc., where u’, p’ are small functions and 
P, p* constitute a simple wave, i.e. satfsfy (1.2) with cp S 0, y S 0 
and depend on the variable 5 = x - v*t. Then. in the first approximation 
we may set u = a*, c = co in (1.3) (since ‘p and ly are small, only 
second-order terms are discarded by doing this). In order to integrate 
(1.3) we transform from x and t to the variables c. t’ = t and take 
account of the fact that 

In these variables the equation of a c--characteristic is linear in 
t’ 

($)_== & (1 -j- I’$) 

As a result we find the integral of (1.3) 
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Here and later, F is an arbitrary function determined by the initial 
and boundary conditions, y is the argument of F. 

Considering the second equation of (1.2) and (1.41, we represent the 
first equation of (1.2) in terms of the small disturbances II’ in the 
form 

After transformation to the variables < and t *, equation (1.5) does 
not contain the derivative &‘/at and is immediately integrated 

Equation (1.6) is the general integral of the system (1.1) linear- 
ized about a’(t) and p’(c). As was to be expected, it contains two arbi- 
trary functions, 0 and F. For constant u” and p" we have, of course, the 
usual result 

Let us now set F E 0 in (1.6); we then obtain a wave moving in the 
positive direction. As is apparent from (1.2), the functions u = u” f u’, 
and p = p" + p' form a simple wave. @ = 0 corresponds to the more inter- 
esting case of a wave propagating in the opposite direction. For in- 
stance, let an acoustic wave propagate oppositely to a simple wave which 
connects the regions of constant flow (1) and (2). The acoustic wave 
propagates (in region (I)) with a frequency o(I) and amplitude urn. Then, 
determining the F(y) in (1.61, we find* 

_?.I_ c sin 
‘&pf I/ ,m/p &f _ &l) 

y 

Urn \ ($1) _ um 2&l &) 

-f:ciiil,rir dv”/dt 

c”p9 1 + t’dv/dg ’ 

x cos 
2&) ‘c/&)/p 

c(l) _ u(1) 
y 

(1.7) 

--- 

* We assume for simplicity that the derivative &O/d< is everywhere 
cant inuous. 
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(the symbol ’ is omitted for constant quantities in region (1)). It 
follows from the above that after the wave passes into region (2), it 
will be sinusoidal with the same amplitude urn (i.e. the amplitude of p’ 

will vary proportionally to cop’) and with the frequency U(~) 

o(2) = & [(uO - 4 Vp”(col’2) 
[(UO - c”) 1/p”/c”](l) (W 

The case u” = CO means simply that the wave is stationary in the 
given region (in the coordinate system chosen): i.e. u’ does not depend 
upon t. 

If there is a region of compression in the simple wave, then for 
1 + t’dv’/dc = 0, which corresponds to the formation of a shock wave, 
the expressions (1.6) and (1.7) diverge*. The solution of the problem 
of interaction of an acoustic wave and a shock wave differs from (1.6) 
and is well known for a stationary discontinuity [d. Equation (1.6) 
together with this solution permits determination of the result of 
passage of a sound wave through a wave of finite extent consisting of a 
discontinuity and a wave of rarefaction trailing behind it. 

It is also easy to determine the behavior of an entropy wave in a 
region of Riemann motion. To do this we set u = u” and S = So + S’ in 
the third equation of (1.1) and again transform to the variables $ and 
t ‘. As a result we obtain 

4 

S’ = F, (fpOcO $ s P’ di) (Fs is an 

We remark also that if the frequency o (1) 

arbitrary function) (1.9) 

is sufficiently large 
(dv”/de is small), the second term in (1.7) can be neglected. Then u’ 
depends only on y and (1.7) is a special case of the “geometrico- 
acoustical” solution (2.7) (taking account of the different choice of 
direction of propagation of the waves). 

2. Geometric acoustics of nonstationary media. We shall now assume 
that the variation of the parameters of the medium correspond to some 
arbitrary motion. Here in the general case a gravity field g(x, t) is 

also present and the medium may be inside a tube of variable cross- 
sectional area A(x, t) (then x ia measured along the axis of the tube). 

* The fact that the amplitude of the wave can increase sharply in a 
region of compression because of the decrease in the region of rare- 
faction is of interest by itself. 
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This last assumption allows us to generalize the solution to the three- 
dimensional case (see below). It also permits consideration of a problem 
which is important in a number of applications, that of longitudinal 
motion of a conducting plasma in a strong magnetic field E (if p << p, = 
H2/8w the motion takes place along the tubes of force of 8, owing to con- 
finement). Under the assumptions which have been made, the right-hand 
sides of the first and second equations of (1.1) are g and -(ad/at + 
uaA/&)p/A., respectively. 

Let us consider the propagation of short waves whose characteristic 
dimensions in space, h, and in time, -r. are small compared to the 
measures of variation of the parameters of the medium 7. and T, respec- 
tively. We again use the transformation (1.2) where ueand pot the para- 
meters of the undisturbed medium (undisturbed relative to the wave under 

study), are now slowly varying functions of x and t. and the integral 
in (1.3) is taken for constant S. The basic equations then give the 
following for cp and q~: 

Equations (2.1) are the exact consequence of the basic system (1.1). 
In the present section we shall restrict ourselves to the linear prob- 
lem, with p = p. + p*, u = u. i- u’, etc. where p’ and u’ are small. We 
also represent cp in the form qO + q’, where be is a slowly varying func- 
tion equal to (duo/dt)+ in accordance with (1.2). Eliminating y from 
(2.1) by differentiation (direct determination of y is not necessary in 
the present approximation), we obtain 

Here the nonlinear terms are omitted and it is considered that the 
perturbation of the entropy is of the second order relative to u’. The 
slowly varying function in the braces is denoted by f. 

If cp* is known, the unknown function zz’ is determined by the linear- 

ized equation (1.2) 

(2.3) 
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Equation (2.2) can be integrated by finding 0’ in the form a(x, t)u’, 
where a is a slowly varying function. Then, to within second-order 
quantities 

($!J_=a ($)_=-2ac0 ?$ 

(the last relation is clear from (2.3) whose right-hand side is obviously 
small for slow variations of the parameters). Therefore 

$ = _ f ‘2°C d u’ 

0 
(2.4) 

Taking account of (2.4). we can also Integrate equation (2.3). If 

6(x, t) is the integral of the equation dxjdt = vO which defines the 
c+-characteristic of the undisturbed system, the general Integral of 
(2.3) has the form 

C+ 

6 (I, 1) = t - s dx 
vo (5 t) 

q= (*)l/‘exp (i$$dt) (2.5) 

(q is a slowly varying factor which determines the variation of u’ on 
the characteristic). For steady motions or no motion of the medium (2.5) 
coincides with known solutions in the approximation of geometric 
acoustics. It should be noted that the solution (2.5) is also valid in 
the three-dimensional case if A is identified with the cross-sectional 
area of an elementary phase tube formed by the normals n to the wave 
front (which differs from a ray tube in a moving medium). This follows 
from the fact that II and u’ are parallel and confirms previously obtained 
results in the stationary case L2.71. 

By the use of (2.5) It is possible to determine the time variation of 
the duration -r and of the energy E of a wave (pulse). (In a stationary 
medium these quantities are obviously constant.) The quantity v is the 
time Interval between the two characteristics (2.5) which bound the wave. 
Considering that the quantity v,, changes only slightly in time T, it is 
easy to show that 

C+ 

z = z1 exp !_?! dt 
v. at ) 

(2.6) 

where -rI is the initial value of -r. 

Since the energy density of the wave equals [?I 

e = 2% PO”‘2 
co 

the total energy in the wave form is 

(2.7) 
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E = em0 = E, c-q 
(S 

_!-ayO & 
v#J at (2.8) 

and. therefore 

Ea - const (2.91 

Thus, as va increases with time, the duration of the wave form de- 
creases and the total energy becomes larger (this also refers to any 
period of a quasiharmonic wave). The quantity ET is an adiabatic in- 
variant in the same sense as for systems with finite numbers of degrees 
of freedom. 

3. Nonlinear motions. The results of the previous section can be 
generalized easily to the case of slight nonlinearity where a’ and p* 
are finite, so that the distortions of the wave caused by nonlinear 
effects and by the variation of the parameters of the system develop in 
comparable‘ intervals. 

If small quantities of the order of the square of a* are considered, 
expression (2.4) for cp’ remains correct inasmuch as the right-hand side 
of (2.3) is already small by virtue of the slow variation of the para- 
meters. However, on the left-hand side of (2.3) we must make the re- 
placement 

We then obtain, instead of (2.7) 

For the stationary case (here 26/& = 1) the solution (3.1) also co- 
incides with results obtained previously (taking account of the comment 
made above on the three-dimensional problem} [51. 

In particular, formula (3.1) permits us to examine problems connected 
with the origination and development of shock waves. The values x., t 
and u ’ which correspond to the formation of a discontinuity are dete& 
mined: as usual, by the conditions at/&’ = 0, a2t/&‘2 = 0.’ We then 
find from (3.1) 

l If the discontinuity begins at the boundary with the undisturbed 
medium then, instead of the second condition, u’ should be set equal 
to zero [31. 
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(3.21 

where a is a quantity which is conserved on the c+-characteristic. 

Ue note that if the integrand in (3.2) decreases so rapidly that the 
integral remains finite for t - co, a discontinuity may not occur at all 
even in a compression wave. I; is not difficult to see that this 
peculiarity is not restricted to the nonstationary problem. For instance, 
let a sinusoidal perturbation begin in 8 steadily moving gas; i.e. 
U’(0, t) = urn sin mt (it is obviously sufficient to examine one period 
of the sine wave). It then follows from (3.2) that 

‘::‘~~(~yjyoa(~,co)i~, =I, u*‘=O (3.3) 

where y is the adiabatic exponent, poo = ~~(0). etc. For a plane wave 
propagating in a homogeneous gravity field in an isothermal atmosphere 
at rest. we have as a result 

2* = x, 7 (7 + 1) @Urn fn 

[i 

g 
-1 i 2c,z 

1-- 
g T (T + 1) C.iwrn Hi x*=------ 

(rf 1) wrn 
1 (3.4) 

Here Xt is the distance corresponding to the formation of a discon- 
tinuity in a homogeneous medium (for g = 0). It follows from (3.3) that 
for g > 0 (propagation toward the center of attraction) x > X ; i.e. 
nonhomogeneity of the gas hinders formation of the disconiinuity. If 
y(y + 1)ou” ’ g the discontinuity does not occur at all.* On the other 
hand, for g < 0 {propagation away from the center of attraction) x < X 
and the discontinuity can begin considerably more rapidly than in (t 

* 

homogeneous medium. ** The cause of this is the variation of u’ on the 
characteristics and the associated differences of velocity of propaga- 
tion of the various points on the profile of the wave. 

As is known, after the formation of a discontinuity the wave is 
simple up to third-order quantities away from the discontinuity. If 

t 

. . 

An analogous conclusion holds for converging spherical waves in a 
central gravity field (A * x2, g * re2 ), even without considering 
reflections which occur near the center (for x < h). 

This last situation is important for a number of astrophysical 
applications. 
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there is no disturbance in front of the discontinuity, then by differ- 
entiating (2.4) with respect to a along the shock-wave trajectory we 
obtain an equation which determines the magnitude of the shock as 

Q 8PoCo a6 2 
as 

- __- 
voco ape at = c s a dl da 

da 
(3.5) 

In the case of a wave form of finite duration the integral 

on the right-hand side of (3.5) cannot be larger than the finite quantity 
B(0). If the integral on the left of (3.5) diverges for t - CO (as in a 
homogeneous medium) then a decreases (to zero) without a finite bound 
and B -. B(0). Here the profile of the wave form behind the discontinu- 
ity approaches a linear shape at great distances. There is. however, 
also another possibility, when the above-mentioned integral remains 
finite as t - OJ (compare (3.1)). In this case a approaches a finite 
limit and B does not reach B(0). Then the profile of the wave will not 
be linear as t - 63. 

As has already been pointed out. the energy of a wave in a nonstation- 
ary medium can increase as a result of the energy of motion of the “un- 
disturbed” medium. Under certain conditions this increase takes Place 
more rapidly than the dissipation of energy in a shock wave (at least 
in finite intervals), so that the total energy in the wave form may in- 
crease even in the presence of a discontinuity. 

In conclusion, we remark that the method which has been Set forth 
allows us to consider analogous problems relating to the ProPagation of 
magnetohydrodynamic and electromagnetic waves [81 in media with vari- 
able properties. In some cases there is a direct mathematical analogy 
between the equations for acoustic waves and those for electromagnetic 
waves in such media [91. 

The author is very grateful to A.V. Gaponov, S.A. Kaplan, and 0. S. 
Ryzhov for their interest in this work and discussions of the results. 
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